Probability Distribution of Bijvoet Differences when the Group of Normal Scatterers is Partly Centrosymmetric*

By S. Parthasarathy and V.Parthasarathi
Centre of Advanced Study in Physics, University of Madras, Madras-600025, India

(Received 1 May 1974; accepted 4 May 1974)

Abstract

Cumulative functions of the normalized Bijvoet differences x and Δ and their expectation values for a non-centrosymmetric crystal in which the group of normal scatterers is partly centrosymmetric are worked out for the cases when the number (P) of anomalous scatterers in the unit cell is one and many ($M N$ and $M C$ cases) respectively. The results are used to obtain the percentage of reflexions for which $\Delta \geq 0.05$. It is found that even when 50% of the normal scatterers form a single centrosymmetric group, the measurability of the Bijvoet difference is not affected significantly by the partial centrosymmetry of the group of normal scatterers.

Introduction

The probability distribution of the normalized Bijvoet difference x has been worked out by Parthasarathy \& Srinivasan (1964) (PS, 1964 for brevity) for a noncentrosymmetric crystal containing an ideally noncentrosymmetric group of normal scatterers \dagger of similar scattering power besides a group of anomalous scatterers in the unit cell. Four cases have been considered, namely, those for which $P=1,2$ and many ($M N \ddagger$ and $M C$ cases) respectively. The Q group met with in actual crystals quite often contains a centrosymmetric part (called the $Q c$ group in this paper; e.g. a benzene ring) attached to a group of other light atoms which form a non-centrosymmetric configuration (called the Qn group). It would therefore be useful to study how the distribution of x (and hence the measurability of the Bijvoet difference) is modified in the presence of such a centrosymmetric group of atoms in the Q group. Since the cumulative function of the normalized Bijvoet difference $\$ \Delta\left(=|\Delta I| / \sigma_{N}^{2}\right)$ is the relevant quantity and since this could be obtained from that of x [see equation (24) below], we shall first obtain the cumulative function of x. We shall consider only three cases, namely, the cases with $P=1, M N$ and

[^0]$M C$ respectively since the theoretical result for the case $P=2$ is not expressible in a simple form. We shall also work out the expectation value of x for the various cases.

The effect of the Q group and its centrosymmetry on the distribution of Δ has been found to be expressible in terms of two parameters, namely, (i) σ_{2}^{2} which is the fractional contribution from all the Q atoms* to the local mean intensity relative to the whole structure and (ii) r which is the fractional contribution to the local mean intensity from the $Q c$ group relative to the whole Q group.

The notation in this paper closely follows that in the earlier paper (PS, 1964). It may also be noted that the distributions derived here are generalizations of those obtained in PS (1964) since the earlier results follow from those derived here under the limiting condition $r \rightarrow 0$.

Derivation of the cumulative function of \boldsymbol{x}

Consider a non-centrosymmetric crystal (space group $P 1$) containing, besides a group of P anomalous scatterers of the same type, Q normal scatterers of which a number $Q c$ of atoms form a single centrosymmetric group and the rest $Q-Q c(=Q n)$ form a non-centrosymmetric group. We shall assume that the Q atoms are of similar scattering power and that the numbers $Q c$ and $Q n$ are such that the structure factors $F_{Q c}$ and $F_{Q n}$ obey the centric and acentric Wilson (1949) distributions respectively. From equation (4) of PS (1964) we obtain the expression for

$$
x\left(=|\Delta I| / 4 \sigma_{Q} \sigma_{P}^{\prime \prime}=|\Delta I| / 4 k \sigma_{Q} \sigma_{P}\right)
$$

to be

$$
\begin{equation*}
x=y_{P} y_{Q} u \tag{1}
\end{equation*}
$$

[^1]where we have used the results
\[

$$
\begin{gather*}
\left.\left.y_{P}^{2}=\left|F_{P}^{\prime}\right|^{2} /\left.\langle | F_{P}^{\prime}\right|^{2}\right\rangle=\left|F_{P}^{\prime \prime}\right|^{2} /\left.\langle | F_{P}^{\prime \prime}\right|^{2}\right\rangle, \tag{2}\\
\sigma_{P}^{\prime \prime 2}=k^{2} \sigma_{P}^{2}=k^{2} \sum_{j=1}^{P} f_{P j}^{\prime 2}, \quad k=\Delta f_{P}^{\prime \prime} /\left(f_{P}^{0}+\Delta f_{P}^{\prime}\right) \tag{3}
\end{gather*}
$$
\]

and the variable $u(=|\sin \psi|)$ [for the definition of ψ see Fig. 1 of PS (1964)] has the probability density function (hereafter abbreviated pdf)

$$
\begin{equation*}
P(u)=\frac{2}{\pi} \frac{1}{\sqrt{1-u^{2}}}, \quad 0 \leq u \leq 1 \tag{4}
\end{equation*}
$$

To obtain the pdf of x it is found to be convenient first to obtain the pdf of the variable t, namely,

$$
\begin{equation*}
t=y_{P} u . \tag{5}
\end{equation*}
$$

From (1) and (5) it is seen that

$$
\begin{equation*}
x=t y_{Q} . \tag{6}
\end{equation*}
$$

The structure factor F_{Q} of the Q group can be written as

$$
\begin{equation*}
F_{Q}=F_{Q n}+F_{Q c} \tag{7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left.\left.\left.\sigma_{Q}^{2}=\left.\langle | F_{Q}\right|^{2}\right\rangle=\left.\langle | F_{Q n}\right|^{2}\right\rangle+\left.\langle | F_{Q c}\right|^{2}\right\rangle=\sigma_{Q n}^{2}+\sigma_{Q c}^{2} . \tag{8}
\end{equation*}
$$

The fractional contribution to the local mean intensity from the $Q c$ and $Q n$ groups of atoms will be denoted by $\sigma_{2 c}^{2}$ and $\sigma_{2 n}^{2}$ respectively. Thus

$$
\begin{equation*}
\sigma_{2 n}^{2}=\sigma_{Q n}^{2} / \sigma_{N}^{2} \quad \text { and } \quad \sigma_{2 c}^{2}=\sigma_{Q c}^{2} / \sigma_{N}^{2} \tag{9}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sigma_{2}^{2}=\sigma_{Q}^{2} / \sigma_{N}^{2}=\sigma_{2 n}^{2}+\sigma_{2 c}^{2} \tag{10}
\end{equation*}
$$

We shall denote the ratio of the contributions to the local mean intensity from $Q c$ and Q groups by r, that is

$$
\begin{equation*}
r=\sigma_{Q c}^{2} / \sigma_{Q}^{2}=\sigma_{2 c}^{2} / \sigma_{2}^{2} \tag{11}
\end{equation*}
$$

It may be seen that as $r \rightarrow 0$ the Q group tends to become completely non-centrosymmetric and this situation is the one dealt with in PS (1964). For the other limiting case, namely, $r \rightarrow 1$, the Q group tends to become completely centrosymmetric. It may also be noted that if the Q group contains atoms of similar scattering power, which is usually the case, we can set $r \simeq$ $Q c / Q$. Thus, for a Q group with similar atoms, r represents the fractional number of atoms in the Q group forming the centrosymmetric part.

From (6) it is seen that in order to obtain the pdf of x we require the pdf of $y_{Q}\left(=\left|F_{Q}\right| / \sigma_{Q}\right)$ which can be deduced from the results of Parthasarathy (1966b). Since the $Q c$ and $Q n$ groups considered here are the analogues of the P and Q groups of Parthasarathy
(1966b), it follows that $P\left(y_{Q}\right)$ needed here can be obtained from equation (8) of Parthasarathy (1966b) by replacing the set of quantities $\left(y, \sigma_{1}^{2}\right.$ and $\left.\sigma_{2}^{2}\right)$ by the corresponding set $\left(y_{Q}, r\right.$ and $\left.1-r\right)$. We thus have

$$
\begin{equation*}
P\left(y_{Q}\right)=-\frac{2 y_{Q}}{\sqrt{1-r^{2}}} \exp \left[-\frac{y_{Q}^{2}}{\left(1-r^{2}\right)}\right] I_{0}\left[\frac{r y_{Q}^{2}}{1-r^{2}}\right] . \tag{12}
\end{equation*}
$$

We shall use the above results to derive the cumulative function of x for the various cases.

One-atom case (i.e. $P=1$)

For this case since the pdf of y_{P} is given by $\delta\left(y_{P}-1\right)$, the pdf of $t\left(=u y_{P}\right)$ could be obtained by making use of (4) in the first result in equation (7) of PS (1964). Thus we obtain

$$
\begin{equation*}
P(t)=\frac{2}{\pi \sqrt{1-t^{2}}}, \quad 0 \leq t \leq 1 \tag{13}
\end{equation*}
$$

Since y_{Q}, y_{P} and u are independent random variables (PS, 1964) so are y_{0} and t, and we obtain from (12) and (13) the joint pdf of y_{Q} and t to be

$$
\begin{align*}
P\left(y_{Q}, t\right) & =P\left(y_{Q}\right) P(t) \\
& =\frac{4 y_{Q}}{\pi \sqrt{1-r^{2} \sqrt{1-t^{2}}}} \exp \left[-\frac{y_{Q}^{2}}{1-r^{2}}\right] I_{0}\left[\frac{r y_{Q}^{2}}{1-r^{2}}\right], \\
0 & \leq y_{Q}<\infty, \quad 0 \leq t \leq 1 . \tag{14}
\end{align*}
$$

The probability that x takes a value which is less than or equal to x_{0}, say, will be the value of the cumulative function of x at $x=x_{0}$. We thus obtain from (14) that

$$
\begin{align*}
N\left(x_{0}\right)=\operatorname{Pr}\left(x \leq x_{0}\right)= & \operatorname{Pr}\left(y_{Q} t \leq x_{0}\right) \\
& =\iint_{y_{Q} t \leq x_{0}} P\left(y_{Q}, t\right) \mathrm{d} y_{Q} \mathrm{~d} t \tag{15}
\end{align*}
$$

Making use of (14) in (15) it can be shown that (see Appendix A)

$$
\begin{gather*}
N\left(x_{0}\right)=\frac{2}{\sqrt{1-r^{2}}} \int_{0}^{x_{0}} \beta \exp \left[-\frac{\beta^{2}}{\left(1-r^{2}\right)}\right] I_{0}\left(\frac{r \beta^{2}}{1-r^{2}}\right) \mathrm{d} \beta \\
+\frac{2}{\pi \sqrt{1-r^{2}}} \int_{0}^{\frac{1}{\left(1+x_{0}^{2}\right)}} \exp \left[-\frac{(1-\beta)}{\beta\left(1-r^{2}\right)}\right] I_{0}\left[\frac{r(1-\beta)}{\left(1-r^{2}\right) \beta}\right] \\
\sin ^{-1}\left(x_{0} \sqrt{\frac{\beta}{1-\beta}}\right) \frac{\mathrm{d} \beta}{\beta^{2}} \tag{16}
\end{gather*}
$$

where we have replaced the dummy variable y_{Q} in the term I_{1} of equation (A3) by β. For any given value of x_{0} the integrals in (16) are to be evaluated numerically.

Many-atom (i.e. $P=M N$) case
Since y_{p} follows the acentric Wilson distribution and
since the pdf of u is given by (4) it follows that the pdf of $t\left(=u y_{P}\right)$ of this paper will be formally the same as that obtained in equation (10) of PS (1964) for the variable $y_{Q}|\sin \psi|$. Thus we have

$$
\begin{equation*}
P(t)=\frac{2}{\sqrt{ } \pi} \exp \left(-t^{2}\right), \quad 0 \leq t<\infty \tag{17}
\end{equation*}
$$

From (12) and (17) we obtain the joint pdf of the independent variables t and y_{Q} to be

$$
\begin{array}{r}
P\left(y_{Q}, t\right)=\frac{4 y_{Q}}{V \pi \sqrt{1-r^{2}}} \exp \left[-t^{2}-\frac{y_{Q}^{2}}{\left(1-r^{2}\right)}\right] I_{0}\left(\frac{r y_{Q}^{2}}{1-r^{2}}\right), \\
0 \leq y_{Q}<\infty, \quad 0 \leq t<\infty . \tag{18}
\end{array}
$$

By following the procedure used for the one-atom case it can be shown that (see Appendix B)

$$
\begin{align*}
& N\left(x_{0}\right)=1-\frac{2 \sqrt{1-r^{2}}}{\pi} \\
& \times \int_{0}^{\pi / 2} \exp \left[-2 x_{0} \sqrt{\frac{1+r \cos 2 \varphi}{1-r^{2}}}\right] \frac{\mathrm{d} \varphi}{(1+r \cos 2 \varphi)} . \tag{19}
\end{align*}
$$

Many-atom (i.e. $P=M C$) case

Since y_{P} follows the centric Wilson distribution and since the pdf of u is given by (4) we obtain, by making use of the first result in equation (7) of PS (1964), the pdf of $t=y_{P} u$ to be

$$
\begin{gather*}
P(t)=\int_{t}^{\infty}\left\{\sqrt{ } \frac{2}{\pi} \exp \left(-\frac{y_{P}^{2}}{2}\right)\right\}\left\{\frac{2}{\pi \sqrt{1-\left(t^{2} / y_{P}^{2}\right)}}\right\} \frac{\mathrm{d} y_{P}}{y_{P}} \\
=\left(\frac{2}{\pi}\right)^{3 / 2} \int_{t}^{\infty} \frac{\exp \left(-y_{P}^{2} / 2\right)}{\sqrt{y_{P}^{2}-t^{2}}} \mathrm{~d} y_{P} . \tag{20}
\end{gather*}
$$

Making use of the substitution $y_{P}^{2}-t^{2}=\varepsilon$ in (20) and then the formula given in equation (13) on p. 138 of Erdelyi (1954) we obtain the pdf of t to be

$$
\begin{equation*}
P(t)=\frac{V 2}{\pi^{3 / 2}} \exp \left(-t^{2} / 4\right) K_{0}\left(t^{2} / 4\right), \quad 0 \leq t \leq \infty . \tag{21}
\end{equation*}
$$

A comparison of (21) with equation (14) of PS (1964) shows that the pdf of t of the present paper is formally identical with the pdf of x for the two-atom case of PS (1964). This property will be exploited later for the numerical evaluation of the cumulative function of x for the present case. From (12) and (21) we obtain the joint pdf of t and y_{Q} to be

$$
\begin{align*}
P\left(y_{Q}, t\right) & =\left[\frac{V^{2}}{\pi^{3 / 2}} \exp \left(-\frac{t^{2}}{4}\right) K_{0}\left(\frac{t^{2}}{4}\right)\right] \\
\times & {\left[\frac{2 y_{Q}}{\sqrt{1-r^{2}}} \exp \left[-\frac{y_{Q}^{2}}{\left(1-r^{2}\right)}\right] I_{0}\left[\frac{r y_{Q}^{2}}{\left(1-r^{2}\right)}\right]\right], } \\
& 0 \leq y_{Q}<\infty, \quad 0 \leq t<\infty \tag{22}
\end{align*}
$$

By following the procedure adopted for the one-atom case it can be shown that (see Appendix C)

$$
\begin{align*}
N\left(x_{0}\right)= & \frac{1}{\sqrt{1-r^{2}}} \int_{0}^{1} N_{2}\left(x_{0} \sqrt{\frac{\beta}{1-\beta}}\right) \\
& \times \exp \left[-\frac{(1-\beta)}{\beta\left(1-r^{2}\right)}\right] I_{0}\left[\frac{r(1-\beta)}{\left(1-r^{2}\right) \beta}\right] \frac{\mathrm{d} \beta}{\beta^{2}} \tag{23}
\end{align*}
$$

where $N_{2}\left(x_{0} \sqrt{\frac{\beta}{1-\beta}}\right)$ is used to denote the value of the cumulative function of x at $x=x_{0} \sqrt{\frac{\beta}{1-\beta}}$ for the two-atom (i.e. $P=2$) case of PS (1964).

Cumulative function of Δ

The normalized Bijvoet difference Δ is defined as [see equation (1) of Parthasarathy, 1967)

$$
\begin{equation*}
\Delta=|\Delta I|\left|\left\langle I_{N}\right\rangle \simeq\right| \Delta I \mid / \sigma_{N}^{2}=4 k \sigma_{1} \sigma_{2} x . \tag{24}
\end{equation*}
$$

Since k, σ_{1} and σ_{2} are constants it is clear from (24) that the cumulative function of Δ, say $N_{\Delta}(\Delta)$, could be obtained from that of x, say, $N_{x}(x)$ from the following result

$$
\begin{equation*}
N_{\Delta}(\Delta)=N_{x}\left(\Delta / 4 k \sigma_{1} \sigma_{2}\right) . \tag{25}
\end{equation*}
$$

Since the cumulative function of x (for a given P) depends on the parameter r, it follows from (25) that the cumulative function of Δ will depend on two parameters characterizing the Q group and its centrosymmetry, namely, $\sigma_{2}^{2}\left(=1-\sigma_{1}^{2}\right)$ and r.

Expectation values of x and Δ

Since y_{P}, y_{Q} and u are mutually independent we obtain from (1) the expectation value of x to be

$$
\begin{equation*}
\langle x\rangle_{P}=\left\langle y_{P}\right\rangle\left\langle y_{Q}\right\rangle\langle u\rangle \tag{26}
\end{equation*}
$$

where the subscript P to the expectation symbol characterizes the P group. It is known that $\left\langle y_{P}\right\rangle=1,2 / 2 / \pi$, $\gamma \pi / 2$ and $\sqrt{2 / \pi}$ according as $P=1,2, M N$ and $M C$ respectively (Parthasarathy, 1967). From (4) it is readily seen that $\langle u\rangle=2 / \pi$. The expectation value of y_{Q} can be derived from equation (37 g) of Parthasarathy (1966a), by replacing σ_{1}^{2} by r, as

$$
\begin{equation*}
\left\langle y_{Q}\right\rangle=\frac{\sqrt{1+r}}{\sqrt{\gamma}} E\left(\sqrt{\frac{2 r}{1+r}}\right)=\frac{1}{\sqrt{\pi}} m_{r}, \quad \text { say . } \tag{27}
\end{equation*}
$$

Substituting the known values of $\left\langle y_{P}\right\rangle$ and $\langle u\rangle$ and (27) in (26) we obtain

$$
\begin{aligned}
\langle x\rangle_{P} & =\frac{2 m_{r}}{\pi^{3 / 2}} \quad \text { for } P=1 \\
& =\frac{4 / 2 m_{r}}{\pi^{5 / 2}} \text { for } P=2
\end{aligned}
$$

$$
\begin{align*}
& =\frac{m_{r}}{\pi} \quad \text { for } \quad P=M N \\
& =\frac{2 \gamma 2 m_{r}}{\pi^{2}} \text { for } P=M C . \tag{28}
\end{align*}
$$

From (24) it follows that

$$
\begin{equation*}
\langle\Delta\rangle_{P}=4 k \sigma_{1} \sigma_{2}\langle x\rangle_{P} . \tag{29}
\end{equation*}
$$

The expectation value of Δ can thus be obtained by substituting (28) in (29).

Discussion of the theoretical results

It is seen from (26) that the measurability of the Bijvoet difference is determined by the nature of the distribution of x. Hence, we shall first study the features of the distribution of x for the various cases. The cumulative functions of x for the cases $P=1, M N$ and $M C$ have been obtained in (16), (19) and (23) and these are in the form of integrals which are to be evaluated by a numerical procedure. The integral in (23) for the case $P=M C$ involves a factor which is formally identical with the cumulative function of x for the twoatom case of PS (1964). To facilitate the numerical evaluation of this, the cumulative function of x for the two-atom case of PS (1964) was obtained first at regular close intervals; interpolation methods were then used to evaluate it for any required value of the argument. The fractional number of reflexions for which $x \geq x_{0}$ is called the complementary cumulative function $\bar{N}\left(x_{0}\right)$ and is given by

$$
\begin{equation*}
\bar{N}\left(x_{0}\right)=1-N\left(x_{0}\right) \tag{30}
\end{equation*}
$$

The function $\bar{N}\left(x_{0}\right)$ for the various cases is given in Table 1 for different values of the parameter r. The values of $\bar{N}\left(x_{0}\right)$ for the limiting situation $r=0$ for the cases $P=1, M N$ and $M C$ agree with the corresponding values obtained for the situation in which the Q group

Table 1. Values (\%) of the complementary cumulative function of x for the cases $P=1, M N$ and $M C$ as a function of r

P.1		P ${ }^{\text {Mc }}$
	$\begin{array}{llllllllllllllll}0.0 & 0.2 & 0.4 & 0.6 & 0.1\end{array}$	$\begin{array}{lllll}0.0 & 0.2 & 0.4 & 0.6 & 0.1\end{array}$
0:0s ${ }_{\text {a }}$		
0.15	\%iole	
Oille	Soid	
O:36	\%io,	
		Soll
	Solem	Sillen
comer		(en
	Sole	lio:
	119.9	
Silleo		
	:10,	a
Siso	\%iol	
1:\%	,	

Table 2. Percentage of reflexions for which $\Delta>0.05$ as a function of k, σ_{2}^{2} and r for the cases $P=1, M N$ and $M C$

Table 3. Expectation value of the normalized Bijvoet difference x for the cases $P=1,2, M N$ and $M C$ as a function of r

	\%i	-:	ف:3	:\%	o.j	i.i	\%.;	: $:$	\%;	1.0. ${ }^{\circ}$
$P=1 \begin{array}{lll}1 \\ 2\end{array} 0.568$	0.588	0.563	0.561	0.9351	8. 3 839	0. 8.490	0.942	0.317 0.113	0.376	0.509
		-		(e.ts			-	\%		(e.ts

is completely non-centrosymmetric (Parthasarathy, 1966c) as expected. Table 1 also reveals an interesting result, namely, for any given values of P and σ_{2}^{2}, even if half the number of atoms in the Q group form a single centrosymmetric group (i.e. $Q c=Q n=Q / 2$ leading to $r=0 \cdot 5$), the value $\bar{N}\left(x_{0}\right)$ for any x_{0} is practically the same as that for the case $r=0$. Thus it turns out that unless the major part of the Q group is centrosymmetric (i.e. unless $Q c \gg Q n$) the centrosymmetry of the Q group does not affect the distribution of x significantly.

To facilitate the study of the influence of the Q group and its centrosymmetry on the measurability of the Bijvoet difference the percentage of reflexions for which $\Delta>0.05$ is also given in Table 2 for various values of r and σ_{2}^{2}. For a given P, k and σ_{2}^{2} it is seen that only when the major part of the Q group is centrosymmetric (i.e. $r>0 \cdot 6$) does the measurability of the Bijvoet difference decrease significantly.

The expectation value of x for the various cases (including the case $P=2$) as obtained from (28) are given in Table 3. For any given case the expectation value of Δ could be obtained from (29) by making use of the known values of k, σ_{2}^{2} and r and the results in Table 3. A study of this Table also confirms the above predictions.

One of the authors (V.P.) would like to thank the Council of Scientific and Industrial Research, New Delhi, India for financial assistance.

APPENDIX A

For a given value, x_{0}, the double integral of equation (15) is to be evaluated over the domain defined by the dotted area in Fig. 1(a). This area can be taken to be the sum of two areas, viz. (i) the area a_{1} of the rectangle $O A B C$ defined by the lines $y_{Q}=0, y_{Q}=x_{0}, t=0$ and $t=1$ and (ii) the area a_{2} bounded by the lines $y_{Q}=x_{0}$, $t=0$ and the curve $t y_{Q}=x_{0}$. Thus the domain of integration in the $\left(y_{Q}, t\right)$ plane is

$$
\begin{align*}
& 0 \leq t \leq 1, \quad 0 \leq y_{Q} \leq x_{0} \\
& 0 \leq t \leq x_{0} / y_{Q}, \quad x_{0} \leq y_{Q}<\infty \tag{A1}
\end{align*}
$$

We can therefore rewrite (15) as

$$
N\left(x_{0}\right)=\int_{0}^{x_{0}} \int_{0}^{1} P\left(y_{Q}, t\right) \mathrm{d} t \mathrm{~d} y_{Q}
$$

$$
\begin{equation*}
\int_{x_{0}}^{\infty} \int_{0}^{x_{0} / y Q} P\left(y_{Q}, t\right) \mathrm{d} t \mathrm{~d} y_{Q} \tag{A2}
\end{equation*}
$$

(a)

(b)

Fig. 1. (a) Domain of definition of the joint density function $P\left(y_{Q}, t\right)$ for the one-atom case. (b) Domain of definition of the joint density function $P\left(y_{Q}, t\right)$ for the $P=M N$ case.

Substituting (14) in (A2) and carrying out the integration over t first we obtain

$$
\begin{align*}
N\left(x_{0}\right) & =\int_{0}^{x_{0}} \frac{2 y_{Q}}{\sqrt{1-r^{2}}} \exp \left[-\frac{y_{Q}^{2}}{\left(1-r^{2}\right)}\right] I_{0}\left[\frac{r y_{Q}^{2}}{1-r^{2}}\right] \mathrm{d} y_{Q} \\
& +\int_{x_{0}}^{\infty} \frac{4 y_{Q}}{\pi \sqrt{1-r^{2}}} \\
& \times \exp \left[-\frac{y_{Q}^{2}}{\left(1-r^{2}\right)}\right] I_{0}\left[\frac{r y_{Q}^{2}}{1-r^{2}}\right] \sin ^{-1}\left(x_{0} / y_{Q}\right) \mathrm{d} y_{Q} \\
& =I_{1}+I_{2}, \quad \text { say } . \tag{A3}
\end{align*}
$$

It is convenient to write I_{2} in a form suitable for computation by making use of the substitution $y_{Q}=$ $\sqrt{(1-\beta) / \beta}$, so that

$$
\begin{align*}
I_{2}=\frac{2}{\pi \sqrt{1-r^{2}}} \int_{0}^{\frac{1}{1+x_{0}^{2}}} & \exp \left[-\frac{(1-\beta)}{\beta\left(1-r^{2}\right)}\right] I_{0}\left[\begin{array}{l}
r(1-\beta) \\
\left(1-r^{2}\right) \beta
\end{array}\right] \\
& \times \sin ^{-1}\left(x_{0} \sqrt{\frac{\beta}{1-\beta}}\right) \frac{\mathrm{d} \beta}{\beta^{2}} . \tag{A4}
\end{align*}
$$

APPENDIX B

For this case the double integral of equation (15) is to be evaluated over the domain represented by the dotted area in Fig. 1(b), namely

$$
\begin{equation*}
0 \leq t \leq x_{0} / y_{Q}, \quad 0 \leq y_{Q}<\infty . \tag{B1}
\end{equation*}
$$

Substituting (18) in (15) we obtain

$$
\begin{align*}
N\left(x_{0}\right) & =\int_{0}^{\infty} \int_{0}^{x_{0} / y_{Q}} \frac{4 y_{Q}}{V \pi \sqrt{1-r^{2}}} \\
& \times \exp \left[-t^{2}-\frac{y_{Q}^{2}}{\left(1-r^{2}\right)}\right] I_{0}\left(\frac{r y_{Q}^{2}}{1-r^{2}}\right) \mathrm{d} t \mathrm{~d} y_{Q} . \tag{B2}
\end{align*}
$$

Carrying out the integration over t first we obtain

$$
\begin{align*}
& N\left(x_{0}\right)=\int_{0}^{\infty} \frac{2 y_{Q}}{\sqrt{1-r^{2}}} \\
& \quad \times \exp \left[-\frac{y_{Q}^{2}}{\left(1-r^{2}\right)}\right] I_{0}\left(\frac{r y_{Q}^{2}}{1-r^{2}}\right) \operatorname{erf}\left(\frac{x_{0}}{y_{Q}}\right) \mathrm{d} y_{Q} . \tag{B3}
\end{align*}
$$

Making use of the substitution $y_{Q}^{2}=\varepsilon$ in (B3), replacing the Bessel function by its integral representation [see equation (9-6.16) on p. 376 of Abramowitz \& Stegun (1965)] interchanging the order of the resulting integrations, and finally carrying out the integration with respect to ε first, we obtain

$$
\begin{align*}
& N\left(x_{0}\right)=1-\frac{\sqrt{1-r^{2}}}{\pi} \\
& \quad \times \exp \left(-2 x_{0} \sqrt{\left.\frac{1+r \cos \theta}{1-r^{2}}\right)}\right) \frac{\mathrm{d} \theta}{(1+r \cos \theta)} \tag{B4}
\end{align*}
$$

where we have made use of the result (7-4.20) on p . 303 of Abramowitz \& Stegun (1965). On substitution $\theta=2 \varphi$, (B4) yields

$$
\begin{align*}
& N\left(x_{0}\right)=1-\frac{2 \sqrt{1-r^{2}}}{\pi} \\
& \quad \times \int_{0}^{\pi / 2} \exp \left(-2 x_{0} \sqrt{\frac{1+r \cos 2 \varphi}{1-r^{2}}}\right) \frac{\mathrm{d} \varphi}{(1+r \cos 2 \varphi)} \tag{B5}
\end{align*}
$$

APPENDIX C

In order to obtain $N\left(x_{0}\right)$ for the present case we have to evaluate the double integral in (15) subject to the limits given by (B1) with equation (22) as the integrand. That is

$$
\begin{align*}
& N\left(x_{0}\right)=\int_{0}^{\infty}\left\{\frac{2 y_{Q}}{\sqrt[V]{1-r^{2}}} \exp \left[-\frac{y_{Q}^{2}}{\left(1-r^{2}\right)}\right] I_{0}\left[\frac{r y_{Q}^{2}}{1-r^{2}}\right]\right. \\
& \left.\quad \times \int_{0}^{x_{0} / v Q} \frac{V 2}{\pi^{3 / 2}} \exp \left(-\frac{t^{2}}{4}\right) K_{0}\left(t^{2} / 4\right) \mathrm{d} t\right\} \mathrm{d} y_{Q} . \tag{C1}
\end{align*}
$$

Remembering that $P(t)$ of (21) is formally identical with the function $P(x)$ obtained in PS (1964) for the two-atom case, and that t in (Cl) is a dummy variable of integration we can rewrite (Cl) as

$$
\begin{align*}
& N\left(x_{0}\right)=\int_{0}^{\infty} \frac{2 y_{Q}}{\sqrt{1-r^{2}}} \\
& \quad \times \exp \left[-\frac{y_{Q}^{2}}{\left(1-r^{2}\right)}\right] I_{0}\left[\frac{r y_{Q}^{2}}{1-r^{2}}\right] N_{2}\left(x_{0} / y_{Q}\right) \mathrm{d} y_{Q} \tag{C2}
\end{align*}
$$

where $N_{2}(x)$ denotes the cumulative function of x for the two-atom case of PS (1964). Making the substitution $\left.y_{Q}=\sqrt{(1}-\bar{\beta}\right) / \beta$ in (C2) we obtain

$$
\begin{align*}
N\left(x_{0}\right)= & \frac{1}{\sqrt{1-r^{2}}} \int_{0}^{1} N_{2}\left(x_{0} \sqrt{\frac{\beta}{1-\beta}}\right) \\
& \times \exp \left[-\frac{(1-\beta)}{\beta\left(1-r^{2}\right)}\right] I_{0}\left[\frac{r(1-\beta)}{\left(1-r^{2}\right) \beta}\right] \mathrm{d} \beta / \beta^{2} . \tag{C3}
\end{align*}
$$

References

Abramowitz, M. \& Stegun, I. A. (1965). Handbook of Mathematical Functions. New York: Dover.
Erdelyi, A. (1954). Tables of Integral Transforms, Vol. I. New York: McGraw-Hill.
Parthasarathy, S. (1966a). Z. Kristallogr. 123, 27-50.
Parthasarathy, S. (1966b). Z. Kristallogr. 123, 77-80.
Parthasarathy, S. (1966c). Studies on Crystal Structure: Application of Probability Methods to Problems in X-ray Crystallography. Thesis, Univ. of Madras, Madras, India.
Parthasarathy, S. (1967). Acta Cryst. 22, 98-103.
Parthasarathy, S. \& Srinivasan, R. (1964). Acta Cryst. 17, 1400-1407.
Rogers, D. (1965). In Computing Methods in Crystallography, Edited by J. S. Rollett. Oxford: Pergamon Press.
Wilson, A. J. C. (1949). Acta Cryst. 2, 318-321.

[^0]: * Contribution No. 372 from the Centre of Advanced Study in Physics, University of Madras, Guindy Campus, Madras600025 , India.
 \dagger Following PS (1964) normal scatterers will be referred to as Q atoms and anomalous scatterers as P atoms. P and Q also denote respectively the number of anomalous and normal scatterers in the unit cell.
 \ddagger This has been referred to as MA in PS (1964). The present symbol has been adopted in view of the comments of Rogers (1965).
 § Though the more relevant quantity for this is the Bijvoet ratio δ, we shall not deal with it in this paper owing to the complications involved in the theory. It may be noted that the results regarding the effect of centrosymmetry in the Q group on the measurability of the Bijvoet difference obtained from a study of the distribution of Δ would however agree closely with that obtained from a study of the distribution of δ.

[^1]: * The fractional contribution to the local mean intensity from the P atoms is denoted by σ_{1}^{2} which is equal to $1-\sigma_{2}^{2}$.

