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Probability Distribution of Bijvoet Differences when the Group of Normal Scatterers 
is Partly Centrosymmetric* 
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Cumulative functions of the normalized Bijvoet differences x and A and their expectation values for a 
non-centrosymmetric crystal in which the group of normal scatterers is partly centrosymmetric are 
worked out for the cases when the number (P) of anomalous scatterers in the unit cell is one and many 
(MN and MC cases) respectively. The results are used to obtain the percentage of reflexions for which 
A > 0.05. It is found that even when 50 % of the normal scatterers form a single centrosymmetric group, 
the measurability of the Bijvoet difference is not affected significantly by the partial centrosymmetry of 
the group of normal scatterers. 

Introduction 

The probabi l i ty  distr ibution of the normalized Bijvoet 
difference x has been worked out by Par thasarathy & 
Srinivasan (1964) (PS, 1964 for brevity) for a non- 
centrosymmetric crystal containing an ideally non- 
centrosymmetric group of normal  scattererst of  sim- 
ilar scattering power besides a group of  anomalous 
scatterers in the unit cell. Four  cases have been con- 
sidered, namely, those for which P =  1, 2 and many 
(MN~ and MC cases) respectively. The Q group met 
with in actual crystals quite often contains a centro- 
symmetric part  (called the Qc group in this paper;  e.g. 
a benzene ring) attached to a group of  other light 
atoms which form a non-centrosymmetric  configura- 
t ion (called the Qn group). It would therefore be use- 
ful to study how the distr ibution of x (and hence the 
measurabil i ty of  the Bijvoet difference) is modified in 
the presence of such a centrosymmetric group of  atoms 
in the Q group. Since the cumulative function of the 
normalized Bijvoet difference§ A(=  IAIl/a~r) is the rel- 
evant quanti ty and since this could be obtained from 
that  of  x [see equation (24) below], we shall first ob- 
tain the cumulative function of  x. We shall consider 
only three cases, namely,  the cases with P = 1, MN and 

* Contribution No. 372 from the Centre of Advanced Study 
in Physics, University of Madras, Guindy Campus, Madras- 
600025, India. 

t Following PS (1964) normal scatterers will be referred to 
as Q atoms and anomalous scatterers as P atoms. P and Q also 
denote respectively the number of anomalous and normal scat- 
terers in the unit cell. 

:I: This has been referred to as MA in PS (1964). The present 
symbol has been adopted in view of the comments of Rogers 
(1965). 

§ Though the more relevant quantity for this is the Bijvoet 
ratio 3, we shall not deal with it in this paper owing to the 
complications involved in the theory. It may be noted that the 
results regarding the effect of centrosymmetry in the Q group 
on the measurability of the Bijvoet difference obtained from a 
study of the distribution of A would however agree closely 
with that obtained from a study of the distribution of & 

MC respectively since the theoretical result for the 
case P =  2 is not expressible in a simple form. We shall 
also work out the expectation value of  x for the various 
cases. 

The effect of  the Q group and its centrosymmetry 
on the distribution of  A has been found to be ex- 
pressible in terms of two parameters,  namely,  (i) a~ 
which is the fractional contr ibut ion from all the Q 
atoms* to the local mean intensity relative to the whole 
structure and (ii) r which is the fractional contr ibution 
to the local mean intensity from the Qc group relative 
to the whole Q group. 

The notat ion in this paper closely follows that in the 
earlier paper  (PS, 1964). It may also be noted that the 
distributions derived here are generalizations of those 
obtained in PS (1964) since the earlier results follow 
from those derived here under the l imiting condition 
r---~ 0. 

Derivation of the cumulative function of x 

Consider a non-centrosymmetric  crystal (space group 
P 1) containing, besides a group of  P anomalous  scat- 
terers of  the same type, Q normal  scatterers of  which 
a number  Qc of  atoms form a single centrosymmetric 
group and the rest Q - Q c  ( =  Qn) form a non-centro- 
symmetric group. We shall assume that the Q atoms 
are of  similar scattering power and that the numbers  
Qc and Qn are such that the structure factors Foc and 
Fo, obey the centric and acentric Wilson (1949) distri- 
butions respectively. F rom equation (4) of  PS (1964) 
we obtain the expression for 

to be 
x (= IAll/4aoa'p" = IAll/4kao~rp) 

x= ypyou (1) 

* The fractional contribution to the local mean intensity 
from the P atoms is denoted by a 2 which is equal to 1-a 2. 
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where we have used the results 

y~,=IF; , I~I ( IF; , I~)=IF;I~ / ( IF; I~)  , (2) 
P 

t t  2 a~, =kZa~=k z ~f 'e~ ,  k=Af; , ' / ( f °+Af;  ,) (3) 
j = l  

and the variable u (=  Isin ~'l) [for the definition of ~, 
see Fig. 1 of PS (1964)] has the probability density 
function (hereafter abbreviated pdf) 

2 1 
P ( u ) =  - 

V T - #  ' 
0_<u_<l. 

To obtain the pdf of x it is found to be convenient 
first to obtain the pdf of the variable t, namely, 

t = y p u  . 

From (1) and (5) it is seen that 

x=ty  a . (6) 

The structure factor FQ of the Q group can be written as 

FQ= FQ. + FQ~ (7) 
so that 

a~= <IFQI~>= <lFo.I ~> + ~ - ~ <IFQ~I ) - a o . + % = .  (8) 

The fractional contribution to the local mean intensity 
from the Qc and Qn groups of atoms will be denoted 
by a~ and a22, respectively. Thus 

so that 

0.2n ~ 2 2 2 2 2 o'o./o'N and a2c=aaclaN (9) 

(1966b), it follows that P(Yo) needed here can be ob- 
tained from equation (8) of Parthasarathy (1966b) by 
replacing the set of quantities (y, a~ and a~) by the 
corresponding set (yQ, r and 1 -  r). We thus have 

2Y° e x p [  Y~ 110[  r y~ 1 P(YQ)-- [/ [ 1 - &  (12) (1-rZ)] I 

We shall use the above results to derive the cumulative 
function of x for the various cases. 

One-atom case (i.e. P= 1) 
(4) For this case since the pdf ofye is given by 5(y~,- 1), 

the pdf of t (=  uyp) could be obtained by making use 
of (4) in the first result in equation (7) of PS (1964). 
Thus we obtaiff 

2 
(5) P( t ) - z~{2 'V1-  O<t_< 1. (13) 

(io) 

We shall denote the ratio of the contributions to the 
local mean intensity from Qc and Q groups by r, that is 

2 2 2 r=aoc/aQ=~c/a z . (11) 

It may be seen that as r ~ 0 the Q group tends to 
become completely non-centrosymmetric and this sit- 
uation is the one dealt with in PS (1964). For the other 
limiting ease, namely, r ~ 1, the Q group tends to be- 
come completely centrosymmetric. It may also be noted 
that if the Q group contains atoms of similar scatter- 
ing power, which is usually the case, we can set r _  
Qc/Q. Thus, for a Q group with similar atoms, r rep- 
resents the fractional number of atoms in the Q group 
forming the centrosymmetric part. 

From (6) it is seen that in order to obtain the pdf 
of x we require the pdf of Yo(= IFol/cro) which can be 
deduced from the results of Parthasarathy (1966b). 
Since the Qc and Qn groups considered here are the 
analogues of the P and Q groups of Parthasarathy 

Since Yo, YP and u are independent random variables 
(PS, 1964) so are Yo and t, and we obtain from (12) 
and (13) the joint pdf o f y  o and t to be 

P(yo, t)=P(yo)P(t) 

....... 4_y.?_ . . . . .  exp [ _  y~ ] i o [ r Y  ~ 1 
z c ~  r ~ [ / l - - t  i t 1- rE]  t l  - reJ ' 

O<yo<oo, O < t < l .  (14) 

The probability that x takes a value which is less than 
or equal to x0, say, will be the value of the cumulative 
function of x at X=Xo. We thus obtain from (14) that 

N(xo) = Pr (x < x0)= Pr (yet < xo) 

= I fro,<_~,oP(Yo, t)dyodt. (15) 

Making use of (I4) in (15) it can be shown that (see 
Appendix A) 

2 f12 ( rfl2 ~dfl f? [ ,o 
2 1 

f:'+X 'exp[ (_!-p) 1 
f l ( l_rZ ) j Io l ( l _ r 2 ) N  

d~ 
sin- 1 (x0 Vl--fl fl)-fl-~ (16) 

where we have replaced the dummy variable Yo in the 
term/1 of equation (A3) by ft. For any given value of 
x0 the integrals in (16) are to be evaluated numerically. 

Many-atom (i.e. P = M N )  case 
Since Ye follows the acentric Wilson distribution and 
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since the pdf of u is given by (4) it follows that the pdf of 
t (=  uye) of this paper will be formally the same as that 
obtained in equation (10) of PS (1964) for the variable 
Yo[ sin 9'1. Thus we have 

2 
P ( t ) = - ~ e x p ( - t 2 ) ,  0_<t<oo. (17) 

From (12) and (17) we obtain the joint pdf of the in- 
dependent variables t and Ye to be 

4y o y~ _ _  _] [ ry~ 
P(Yo, t)=l/Zq/~exp [ - t 2 -  ( l_r2)]  Io \ l_r2] ,  

0 < y e < o o ,  0 < t < o o .  (18) 

By following the procedure used for the one-atom case 
it can be shown that (see Appendix B) 

N(x0)  = 1 2 V']-- r2 
7~ 

I n / z [  V l + r  cos 2~0] d~0 
x exp - 2x0 . (19) 

~o 1 --r 2 (1 +r  cos 2~0) 

Many-atom (i.e. P= MC) case 
Since Ye follows the centric Wilson distribution and 

since the pdf of u is given by (4) we obtain, by making 
use of the first result in equation (7) of PS (1964), the 
pdf of t =yeu to be 

oo 2 exp 2 ~dyp 
P( t )=  It { ~ - ( - @ ) } { r c V ~ l _ ( t 2 / y g i l - ~ p  

----(2) 3/2 foo exp (--y2__/2) dye. (20) 
t ~ - - t  2 

Making use of the substitution y2 _ t2=e  in (20) and 
then the formula given in equation (13) on p. 138 of 
Erdelyi (1954) we obtain the pdf of t to be 

P( t )=  1/2 ~-~exp(- t2/4)  Ko(t2/4), O<t<_oo. (21) 

A comparison of (21) with equation (14) of PS (1964) 
shows that the pdf of t of the present paper is formally 
identical with the pdf of x for the two-atom case of 
PS (1964). This property will be exploited later tbr the 
numerical evaluation of the cumulative function of x 
for the present case. From (12) and (21) we obtain the 
joint pdf of t and Yo to be 

P(Yo, t)=[-~/2exp(-t---f)Ko(t---f)] 

[ 2Yo_ yg [ ryg ]] 
x [ l[/1--r2 exp [ (l_rZ) ] I0 [(l_rZ)] ] , 

O < yo < oo , 0 < t < o o .  (22) 

By following the procedure adopted for the one-atom 
case it can be shown that (see Appendix C) 

N(xo) - - -  1 / ~  oN2 x0 

×exp[ l 
fl(1-r2)J Io [(1-r2)flJ fl~- (23) 

w ere (x0V ) use  to denote val e of 

the cumulative function of x at X=Xo for the 

two-atom (i.e. P=2)  case of PS (1964). 

Cumulative function of A 
The normalized Bijvoet difference A is defined as 

[see equation (1) of Parthasarathy, 1967) 

A=lAXl/(IN)~-IAXl/a~=4kala2x . (24) 

Since k, al and a2 are constants it is clear from (24) 
that the cumulative function of A, say Na(A), could be 
obtained from that of x, say, Nx(x) from the following 
result 

N,~(A)= Nx(A/4kcrxO'2) . (25) 

Since the cumulative function of x (for a given P) 
depends on the parameter r, it follows from (25) that 
the cumulative function of A will depend on two par- 
ameters characterizing the Q group and its centro- 
symmetry, namely, a~(= 1 -  a 2) and r. 

Expectation values of x and A 
Since Ye, Yo and u are mutually independent we ob- 

tain from (1) the expectation value of x to be 

(x)e= (ye) (yo) (u) (26) 

where the subscript P to the expectation symbol char- 
acterizes the P group. It is known that (ye)= 1, 21/2/rc, 
1/zr/2 and 1/2-/re according as P =  1, 2, M N  and MC 
respectively (Parthasarathy, 1967). From (4) it is read- 
ily seen that (u)=2/rc. The expectation value of Yo 
can be derived from equation (37g) of Parthasarathy 
(1966a), by replacing a~ by r, as 

(Ye) -  l/lr E 1-+-i = ~ m , ,  say. (27) 

Substituting the known values of (Ye) and (u) and 
(27) in (26) we obtain 

2 m  r 
(x)e = ~3/2 for P =  1 

41/2m, m 
7 ~ 5 / 2  

for P = 2  
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_ m, for P M N  
7~ 

_21/2m~ for P = M C .  

From (24) it follows that 

(A)l,=4ka~a2(x)p . 

Table 2. Percentage of  reflexions for which A > 0.05 as 
a function of  k, a 2 and r for the cases P = 1, M N  and MC 

k ~ =  P . 1  P . m  

( 2 8 )  + +g- , . ;  ;.+ ; . , - a - , ~  , . . . . . . . .  o.V-~:; a ,  ~., ; : , -  + . . . . .  
O*05 0 . 1 1  1 1 , 1  1 1 . 7  1 1 , 1  2 1 , 1  1 1 , $  1 1 . 1  1 1 . 1  2 1 . S  1 7 , 0  1 7 , ?  1 6 . 7  1 5 . 0  l l . $  1 3 . 1  1 5 , o  

0 . 1 0  1 7 . 7  3 7 . 4  ) I . O  ) S . 1  1 7 . |  1 1 . 7  7 1 . 5  7 1 . 0  7 7 . 1  7 5 . 1  7 4 . $  7 4 . 7  1 3 . 1  7 3 . 1  7 2 . 1  
0.11 44.0 41.0 41.0 41.7 11.6 $1.1 35.4 17.1 $2.9 lO.5 11.7 11.o 77.1 71.1 21. t  
0.40 47.O 41.1 4S.O 44.7 41.4 11.0 3S*O )S.S 34.7 32.S 50.1 so.n 71.S 21.? 72.:P 
O.SO 51.0 47.7 4S.O 4S.1 47.S ) * . 1  11.1 lS.0 34.1 SO.) 30.7 S0.1 10.2 71.S ~?.1 

0.10 0.10 SS.S SS.) 14.+I 11.1 41.7 43.S 4S.S ,~7.S 11.S 31.t, SO.1 , ~ .o  ) s .s  s+~.s 17.1 
O.lO s s .o  41.1 ~+~.1 ss.,~ io .4  s l . s  s ) . )  17.2 sl.++ i , t .7  4~,.s ,14.1 4 3 . t  , o . !  ,11.o 
o . s o  7 0 . 0  1 1 . 7  s $ . 1  1 1 . 7  1 4 . g  S l . 0  S ; . l  s 7 . 1  5 5 . 1  s $ . s  1 1 . 5  4 1 . s  4 7 . 1  4 1 . 1  4 ~ . 1  
O*40 71,1 72.1 71.0 iO* l  17.0 IO*O S+.1 $1.7 Si*O $5.7 SO*S 50*7 45.S 41.6 41.+ 
o.so ;~.~, 37.7 71.s ;o.7 s ; .1  so . ;  so.s s , .1  Sl.S s* .s  so.~l S0.7 SO.7 41.7 47.1 

(29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  O , 1 0  7 1 . 1  7 1 . 1  7 1 . 1  7 5 . 0  7 1 . s  0 5 , |  I S . 7  6 3 . 7  1 1 . 0  0 2 . 1  $ 5 . 1  S $ . 1  5 3 . 1  $ 4 . 2  $ 7 . 2  
O.)O 7 1 . 7  3 1 . S  7 1 . 1  7 1 , 0  7 3 , 0  1 1 . $  4 1 , )  S I . I  1 7 . 7  | S . $  $ 1 . 7  5 1 . 2  S I . S  $ 7 , 1  5 3 , 1  
O.4O 11.0 O0.1 10.4 71.1 77.1 21.2 32.0 70.S 1 1 . ,  ST.) SO.) SO.) S0.7 Sl.S ST.) 
O.SO i ] , 4  11,1 10, i  71.1 77, i  71,7 72.S 71,0 11,1 17.1 11.4 11.2 10.7 51.1 57.1 

0 . 7 0  1 . 1 0  7 0 , 1  7 1 . S  7 1 , 1  7 5 . 0  1 2 . 6  1 5 , 1  I $ . )  0 5 . 2  1 4 . 0  1 1 . 1  S S o l  3 5 . 1  $ $ . 2  $ 4 . 1  5 7 . 1  
O , z o  1 7 . 5  1 2 . 4  1 3 . t  1 1 . 0  ? 0 . 1  7 1 . l  71.0 7 7 . 5  7 1 . 5  SO.5 1 3 . 1  6 7 . 7  $ ) . 5  1 1 . S  5 1 . 4  
o. )o  11.7 14,1 04.2 15.4 11.1 1 1 . 2  74,O 71.S 74.1 77,) t6 ,0  I ) . 1  i$ .4  ~ls.iI 61,1 
o . l o  os . ;  lS.S lS .7  14.s 11.1 72.s , . )  74.1 2~.o 74.= 13.4 13.S 11.1 SO.1 14.1 
0,50 1 1 . 1  I $ , 1  1 5 . S  1 4 , 1  1 1 . 2  7 3 , 1  1 2 , ?  7 7 , )  ) $ , 4  7 4 , 1  1 3 . 1  1 7 . 7  t ) . 3  1 6 . 4  1 4 , 5  

The expectation value of A can thus be obtained by 
substituting (28) in (29). 

0 . 1 3  0 . 1 0  1 1 . 4  1 1 . 7  1 0 . 1  7 1 . 1  7 7 . 2  7 1 . 7  7 1 . 5  7 2 . 0  1 1 . 1  6 2 . 1  1 1 . 4  1 1 . 7  6 0 . 7  5 5 . 1  5 7 . 1  
0,70 n . o  13.1 15.5 14.11 15,2 77. !  ?).7 72.) ) $ . t  711.6 07.1 &7.7 $7.1 66.4 14.5 
0.30 13.7 17.1 17.3 16.;  83.3 10.4 10.$ ?g.S ?$.0 77.1 )0.1 70.5 70.1 6| .1 17.5 
0 . 4 0  1 1 . 3  1 2 * 4  1 1 . 1  1 7 . 5  I G . 2  1 1 . 5  1 2 . ~  1 1 . 0  2 0 . 2  7 2 . 6  7 1 . 5  7 3 . 1  7 2 . 4  7 0 . $  1 1 * I  
O.)O I I * I  l l * +  1 1 . $  1 7 . 1  I I * 5  1 1 . 1  l l * l  1 1 . 4  I 0 * 6  7 1 . 0  7 3 . 3  7 7 . 7  2 1 . I  7 0 * I  1 1 . 7  

Discussion of thetheoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . 7 0  1 1 . 1  I 1 . 1  1 7 . 1  I ? o )  1 5 . 1  1 1 . 7  I 1 . 1  1 0 . 1  7 1 . t  1 1 . 3  1 1 . 5  7 1 . 4  7 1 . 0  ) O . l  H . 4  
0. )0  I t . I  I1 ,1  11.4 I L l  17.7 11.4 11.)  11.1 11.)  10.7 74.0 71. t  75o5 71.7 71,2 
1 . 4 0  1 0 . 1  J O . )  5 0 . 1  1 1 . 1  1 1 . 5  1 4 . 4  1 4 , )  1 3 . 1  1 1 . 2  1 1 . 1  2 5 . ?  7 5 . 1  7 4 . 7  7 3 . 1  7 1 . )  
O,SO 1 0 . 4  $ 0 . 5  1 0 , 3  1 1 . 8  1 1 . )  1 1 , 1  1 4 . $  1 4 . 2  1 2 , 5  1 7 . !  7 3 . 1  7 3 . 1  7 3 . 2  711.$ 7 2 . 7  

It is seen from (26) that the measurability of the Bijvoet .++++:.ar+~+r+ra+~m+am.+++a+++.;r++r+ar++r++++.;;,.~++.:..+>..i++.a+~ai.+;r+~m.+a..;;;;.+:r 
difference is determined by the nature of the distribu- , ............... • 
tion of x. Hence, we shall first study the features of 
the distribution of x for the various cases. The cumula- 
tive functions of x for the cases P =  1, M N  and MC 
have been obtained in (16), (19) and (23) and these are 
in the form of integrals which are to be evaluated by 
a numerical procedure. The integral in (23) for the 
case P =  M C  involves a factor which is formally iden- 
tical with the cumulative function of x for the two- 
atom case of PS (1964). To facilitate the numerical 
evaluation of this, the cumulative function of x for the 
two-atom case of PS (1964) was obtained first at reg- 
ular close intervals; interpolation methods were then 
used to evaluate it for any required value of the argu- 
ment. The fractional number of reflexions for which 
X>Xo is called the complementary cumulative func- 
tion 37(x0) and is given by 

N(xo) = 1 -N(xo ) .  (30) 

The function N(xo) for the various cases is given in 
Table 1 for different values of the parameter r. The 
values of-~(x0) for the limiting situation r =  0 for the 
cases P = 1, M N  and MC agree with the corresponding 
values obtained for the situation in which the Q group 

Table 1. Values (%) of  the complementary cumulative 
function of  x for the cases P= 1, M N  and MC as a 

function of  r 

P ' I  P . ~  P e M C  

. . .+..).a+::. . .+:+.. .++.7.+:+.. .+:: . . . . . . . .  +::. . .+:+...+:~2~:+...::~ . . . . . . . .  +:+...~:+...?:L;+:+.+++:+... 
I ) . 0  1 1 . 0  2 1 , 1  1 1 . 1  1 0 . 2  
)2.$ 1 7 . 2  71.8 70.5 15.2 
o3.1 s 5 . )  s 3 . )  s ) . )  6o.4 
51.+ s o . )  5 s . )  51.2 s ) . )  
50 . t  SO.) S0.2 45.2 47.7 
41*8 4%1 41.1 44.2 41.1 
4 1 . 5  4 1 . 1  4 0 . 0  1 9 , 6  2 2 , 2  
3 7 . 3  $ 7 . )  16.1 3 5 . 7  3 4 . 0  
$ 5 . 1  5 3 . 7  $) .7  3 7 . 5  3 0 . 7  
)0 .7  $0.6 $0.1 25.5 37.2 
21.5 27.2 2 ; .4  26*t 2S.Z 
1 3 , t  1 3 , 1  7 4 , 9  1 4 , 1  1 7 . t  
2) . ?  l i . 1  10.7 71.0 10.1 
+ 1 . 1  1 1 . 1  1 0 . 1  1 0 , 1  1 5 , 0  
1 1 . 3  1 1 . )  1 1 . 1  2 4 . $  1 1 . 4  
1 7 , 1  1 1 . 1  1 1 . 1  I $ . 1  1 5 , t  
1 6 . l  1 1 . 1  1 3 . 1  1 5 , 5  1 4 , 1  
1 4 . 1  1 4 . 1  1 4 . +  1 4 . 1  1 1 , $  
1 3 . 1  1 3 . 5  11.) 1 1 . 5  1 1 . 3  
1 7 . 3  1 7 . 4  2 7 . 7  1 1 . 1  1 1 . 3  
10.5 I 0 . 4  1o.3 lO.O 9 . 5  

I . I  I . I  1 . 7  1 . 5  I . I  
7.S 7.4 ; .S  7.7 6 . t  
1.3 1.3 1 . )  6.2 s .~ 

l . s o  s.1 ) . s  1.7 4.0 o.s s.o s.o 5.1 s.o s . !  s.4 5.5 5.s s.1 5.o 
1.so 7.4 1.4 2.7 1.0 S.S 4.1 4.1 4.1 4.7 4.5 1.0 4.S ~.~ 44. 4.S 
2.~o 1 . s  1 . ;  ~ 1.$ ~.7 s . $  5.1 3 .4  ) . s  1 . s  5.1 3 .1  ~ ,  3.1 5 . )  
1.1o 1.1 1.7 . . ;  1.~ 7.o 1.7 ) . 7  7.1 7 .1  ) . 1  ) . 1  ) . )  ,~5 3 . s  3.1 
1 . 5 0  0 . 7  O . l  1 . 0  I . I  l . S  I . 1  I . )  I . )  7 . 1  7 . 1  l . l  1 , I  1 . 2  7 . I  1 . 1  
1 . 0 o  0 . $  0 . 1  1 . 7  O.O 1 , 1  1 . 1  1 . 1  l . O  7 , 0  7 . 7  5 . 4  1 . 4  7 . 4  2 . 4  1 . 1  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

o .os  14.1 14.:+ 04.0 53.7 l s . o  50.s  t 0 . 4  5o.7 15.7 11.1 
0.10 J J .1  11.1 81 . )  17.3 11.4 l l . g  81.1 11.4 10.1 75.0 
0.13 13.1 83.0 82.6 81.1 7 9 . t  34.1 73o9 )$.4 77.4 70.5 
0.70 77.7 77.1 77.0 ?$.1 71.6 11.0 16.1 10.)  65*1 67.g 
o . l s  77.4 71.1 71.s  )0 .1  07.0 00 . )  60.s  51.1 s4 . s  Sl .S 
0.$0 17.1 11.9 11.1 (+4.) 01.1 34.,J $4.7 35.0 57.1 50.5 
O.3S 61.1 61.4 I1.0 59.4 51,4 49.7 41.5 41.1 47.1 iS.4 
0.4O 17.7 51.1 S1.0 11.4 51.3 11.1 41.7 14.1 11.9 40.1 
O.4S 5l*S SZ.2 51.3 MI.$ 4S.$ l O . ;  IO.5 31.1 31.7 )6.4 
o.so 117ol 47.7 46.1 45.1 47.1 , 1 . 4  38.6 )6 .0  34.g 53.7 
0*55 4) .7 41.4 42.5 40,g 11.2 $5*) 33*1 37*1 11.6 lO*O 
o.so 3 t . 6  30 .s  , 1 . 5  ) 1 . )  34.1 )O. l  )0 .0  7 t . 4  11.5 77.1 
0.13 31.1 35.3 34.7 ) , . )  ~+1.7 23 . )  77.1 11.1 25.1 24.1 
o.7o 17.7 12.o 11.1 11.1 71.7 l i . ?  14,5 14.1 75.5 72.5 
0.75 11.9 11.1 21.0 26.8 71.4 72.5 17.7 11.1 71,1 20.) 
O.lO 15.1 15.6 15,0 11.0 72,9 10,2 10.1 l s . l  1 t .1 12.4 
0.15 12o1 11.2 71.1 11.4 2 0 . I  11.3 11.7 l?.O 11.1 16.1 
O.lO 70.3 20.1 11.7 IO.O l l . S  l loS lO.1 11.1 15.7 15.7 
0.15 17.1 17.1 17.4 11.1 11.0 15.0 14.0 11.1 14.1 11.1 
l .  O0 1S.7 13.1 lS .$  lS.O 11.0 11.1 l ) . I  11.$ 13.0 17.0 
1.10 11.0 l l . l  11.1 11.7 1 1 . |  11.1 11.0 IO°O I0o7 10.5 
1.1o o.o 1.0 ! . o  $.1 1.4 O. l  $,o 8.o 8.2 1.7 
1.3o s.1 s.s S.7 7.0 ).S 7.4 7.4 7.4 7.3 7.S 
l . lO  4.1 4.1 5.0 S . )  S . I  1.1 i . 1  1.1 i . 1  I . 1  

Table 3. Expectation value of  the normalized Bijvoet 
difference x for the cases P= 1, 2, M N  and M C  as a 

function of  r 

" ~ ' " ' ~ : ~  . . . . . . .  ~ i  . . . . . . .  ~ i  . . . . . . .  ~: i  . . . . . . .  E l  . . . . . . .  ~ i  . . . . . . .  ~:~ . . . . . . .  K )  . . . . . . .  ~ : i  . . . . . . .  ~: i  . . . . . . .  i ' ~ " "  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

p = 1 1.s04 0 .51 ,  0.11) 1.561 0.551 0.535 0.53o 0.s+,1 0.313 0.576 o . so l  
z o.sol  o.s01 o.so) 0.503 a.so) 0.439 o.~s~ 0.~50 0.~13 0.4~4 o.~s) 

. k  o.soo o.soo 0.,,31 0.491 o.a, gs o.43) o.~, l l  0.,,11 0.~16 o.kos 0.~,30 
, c  o.+lso 0.450 o .4v l  o. ~t,8 0.1~s 0 . ~ 3  o.~s3 o.,,s~ 0.~11 0.++)0 0.~05 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

is completely non-centrosymmetric (Parthasarathy, 
1966c) as expected. Table 1 also reveals an interesting 
result, namely, for any given values of P and a22, even 
if half the number of atoms in the Q group form a 
single centrosymmetric group (i.e. Qc= Qn = Q/2 lead- 
ing to r=0.5),  the value N(x0) for any x0 is practically 
the same as that for the case r=0 .  Thus it turns out 
that unless the major part of the Q group is centro- 
symmetric (i.e. unless Qc>> Qn) the centrosymmetry of 
the Q group does not affect the distribution of x signif- 
icantly. 

To facilitate the study of the influence of the Q 
group and its centrosymmetry on the measurability 
of the Bijvoet difference the percentage of reflexions 
for which A > 0.05 is also given in Table 2 for various 
values of r and a~. For a given P, k and ~ it is seen 
that only when the major part of the Q group is cen- 
trosymmetric (i.e. r>0.6) does the measurability of 
the Bijvoet difference decrease significantly. 

The expectation value of x for the various cases (in- 
cluding the case P =  2) as obtained from (28) are given 
in Table 3. For any given case the expectation value 
of A could be obtained from (29) by making use of the 
known values of k, a~ and r and the results in Table 3. 
A study of this Table also confirms the above predic- 
tions. 
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Council of Scientific and Industrial Research, New 
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A P P E N D I X  A 

For a given value, x0, the double integral of equation 
(15) is to be evaluated over the domain defined by the 
dotted area in Fig. l(a). This area can be taken to be 
the sum of two areas, viz. (i) the area al of the rectangle 
OABC defined by the lines yo=O, ya=xo, t = 0  and 
t = 1 and (ii) the area az bounded by the lines YQ = Xo, 
t = 0  and the curve tyQ=xo. Thus the domain of in- 
tegration in the (yQ, t) plane is 

0 < t _ < l ,  0 _ < y Q < X o ;  

0 < t < Xo/yQ, Xo < YO < co.  (A1) 

Substituting (14) in (A2) and carrying out the integra- 
tion over t first we obtain 

r rP ' 1 ~xo 2yo exp [ -  -(-i Io dy o 
N(xo)= ~o i / i - - r  -r2)J [1----rZJ 

(~ aye 
+   0 l/i_r2 

x exp[  Y~- 1 [ ry~ 1 (1-r2)J I0 L l_r2.  I sin -I (Xo/Yo)dyQ 

=11+I2,  say. (A3) 

We can therefore rewrite (15) as 

N(xo)= I:° llPO'Q, t)dtdYo 

l 
oo (~xO]yQ 

J \o P(yQ, t)dtdyQ. 
XO 

(A2) 

I. B .:..: 

0.8 2}::: 

t o.6;.~:~ 
t 

0.4 ~)~.:!: 

yQ . 

(a) 

1.0 

t O.a 

t 0.6 

0.4 

02. 

0 

:..:.2t 

0.2 0.4 0.6 0.8 1.0 12 

ra ' '~ 

(b) 
Fig. 1. (a) D o m a i n  of  definition of  the joint  density funct ion  

P(yQ, t) for the one -a tom case. (b) D o m a i n  of  definition of  
the joint  density funct ion  P(yQ, t) for the P=MN case. 

It is convenient to write 12 in a form suitable for com- 
putation by making use of the substitution yo= 
I/0--p)/fl,  so that 

1 

2 l '  +x°~ (l_-fl_) 1 [ r(1 -__fl) 1 
12- /----~_---72 ,Io exp [ Io 7~ fl(1 --r2)J [ ( 1 -  r2)flJ 

// dfl (A4) × sin-1 (x0 i ~]~) ~ - .  

A P P E N D I X  B 

For this case the double integral of equation (15) is 
to be evaluated over the domain represented by the 
dotted area in Fig. 1 (b), namely 

O<t<xo/yo, O<yo<co. (B1) 

Substituting (18) in (15) we obtain 

I~ t x°/ro 4yQ N(x0) = 
~o ~o y~z~/1-r 2 

y~ [ ry~ ~ dtdy ° (B2) 

Carrying out the integration over t first we obtain 

~.oo 2Yo 
N(xo)= ~o ~/~r2 

{ 
xexp [ ( l - r 2 ) ]  I0 \ l - r  2] erf ( - ~ )  dyQ. (B3) 

Making use of the substitution y~ = e in (B3), replacing 
the Bessel function by its integral representation [see 
equation (9-6.16) on p. 376 of Abramowitz & Stegun 
(1965)] interchanging the order of the resulting inte- 
grations, and finally carrying out the integration with 
respect to e first, we obtain 
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N(xo) = 1 

1/ ) 1 + r cos O. dO 
xexp -2Xo 1 - r  z (1 + r  cos O) (B4) 

(~  2yQ 
N(Xo)= Jo " I V ~ ]  "2 

[ y_b_ l ~o [rYe1 
xexp [ ( l_ r2 )  ] ll--_r2j Ndxo/yQ) dYo (c2) 

where we have made use of the result (7-4.20) on p. 
303 of Abramowitz & Stegun (1965). On substitution 
0 =  2cp, (B4) yields 

2 V l - r  2 
N(xo) = 1 

7~ 

x ~o exp -2Xo 1 - r  2 ( l+ rcos2~o) '  

(as) 

where N2(x) denotes the cumulative function of x for 
the two-atom case of PS (1964). Making the substitu- 
tion y o =  i / 0 "  fl)/fl in (C2) we obtain 

N(xo) -  - -  ~ oN~ Xo 

(1 - f l )  1 [r(1 :fl)l 
xexp [ fl~-lC-r~_) ] Io [( l_r2)fl  ] dfl/fl z • (C3) 

APPENDIX C 

In order to obtain N(xo) for the present case we have 
to evaluate the double integral in (15) subject to the 
limits given by (B 1) with equation (22) as the integrand. 
That is 

N xo -- o [ io 
(xo.Q 1/2 

×,)o ~j2exp ( - ~ )  K°(t2/4)dt} dyO" (C1) 

Remembering that P(t) of (21) is formally identical 
with the function P(x) obtained in PS (1964) for the 
two-atom case, and that t in (C1) is a dummy variable 
of integration we can rewrite (C1) as 

References 

ABRAMOWITZ, M. & STEGUN, I. A. (1965). Handbook of  
Mathematical Functions. New York: Dover. 

ERDELYI, A. (1954). Tables of Integral Transforms, Vol. I. 
New York: McGraw-Hill. 

PARTHASARATHY, S. (1966a). Z. Kristallogr. 123, 27-50. 
PARTHASARATHY, S. (1966b). Z. Kristallogr. 123, 77-80. 
PARTHASARATHY, S. (1966c). Studies on Crystal Structure: 

Application of Probability Methods to Problems in X-ray 
Crystallography. Thesis, Univ. of Madras, Madras, India. 

PARTHASARATHV, S. (1967). Acta Cryst. 22, 98-103. 
PARTHASARATHY, S. • SRINIVASAN, R. (1964). Acta Cryst. 

17, 1400-1407. 
ROGERS, D. (1965). In Computing Methods in Crystallo- 

graphy, Edited by J. S. ROLLETT. Oxford: Pergamon 
Press. 

WILSON, A. J. C. (1949). Acta Cryst. 2, 318-321. 

i~-:% •.,. : 

ii!!i~::!i~!~ii:~::~-il :~ i): ~/i~:~i~,'::?: i ~ ::~ ::~ 

i- 


